Acknowledgment. This research was supported in part by Grants DMB8518169 (C.H.) from the National Science Foundation and RR-1081 (R.L.) from the National Institutes of Health.

Registry No. 1, 36821-85-9; 2, 53808-87-0; 3, 738-70-5; 4, 56066-63-8; 5, 56518-41-3; 6, 68902-57-8; 7, 69194-91-8; 8, 73090-70-7; 9, 78025-72-6; 10, 77113-54-3; 11, 20344-69-8; 12, 100515-03-5; 13, 107698-02-2; 14, 107698-00-0; 15, 100515-04-6; 16, 71525-05-8; 17, 69945-54-6; 18, 73356-41-9; 19, 13932-40-6; 20, 5355-16-8; 21, 83166-76-1; 22, 107698-03-3; 23, 73356-40-8; 24, 107697-99-4; 25, 83158-06-9; 26, 107698-04-4; 27, 78233-99-5; 28, 50823-96-6; 29, 98612-09-0; 30, 98612-08-9; 31, 80407-58-5; 32, 77113-56-5; 33, 77113-58-7; 34, 77113-57-6; 35, 77113-55-4; 36,

80416-29-1; 37, 59481-28-6; 38, 69945-57-9; 39, 69945-56-8; 40, 69945-58-0; 41, 69945-59-1; 42, 50823-94-4; 43, 77113-61-2; 44, 30077-60-2; 45, 77113-63-4; 46, 69945-60-4; 47, 77113-62-3; 48, 80407-62-1; 49, 77113-60-1; 50, 69945-50-2; 51, 69945-53-5; 52, 107698-01-1; 53, 30077-67-9; 54, 80407-59-6; 55, 69945-52-4; 56, 20285-70-5; 57, 836-06-6; 58, 69945-51-3; 59, 46726-70-9; 60, 18588-43-7; 61, 69945-55-7; 62, 20285-70-5; 63, 77113-59-8; 64, 49873-11-2; 65, 80407-61-0; 66, 80407-60-9; 67, 93317-64-7; 68, 7319-45-1; 4-phenylbenzaldehyde, $3218-36-8$; β-anilinopropionitrile, 1075-76-9; 4-phenyl- β-cyano- N-phenylcinnamylaniline, 121269-12-3; guanidine, 113-00-8; 2,4-diamino-5-[3,4-bis(hydroxy-methyl)-5-ethylbenzyl]pyrimidine, 121269-13-4; 2,4-diamino-5-(3-acetamido-4-(hydroxymethyl)-5-ethylbenzyl)pyrimidine, 121269-14-5; dihydrofolate reductase, 9002-03-3.

Nucleoside Peptides. 10. Synthesis and T-Cell Immunostimulatory Properties of Certain Peptide Derivatives of 6-Azacadeguomycin ${ }^{1}$

Kandasamy Ramasamy, Brahma S. Sharma, Weldon B. Jolley, Roland K. Robins, and Ganapathi R. Revankar*
ICN Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, California 92626. Received December 27, 1988

Abstract

Several amino acid and peptide conjugates of 6-azacadeguomycin (6-amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxopyrazolo[3,4-d]pyrimidine-3-carboxylic acid, 2) have been prepared in good yields, via a two-step procedure involving 1-hydroxybenzotriazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride mediated coupling of 2 with an appropriately protected amino acid or peptide, followed by ammonolysis. Thus, condensation of 2 with L-phenylalanine methyl ester, glycine ethyl ester, and L-glutamic acid diethyl ester gave the corresponding protected linear nucleoside peptides (3,5, and 7, respectively). Subsequent ammonolysis of 3,5, and 7 furnished L-phenylalanine amide (4), glycine amide (6) and L-glutamic acid diamide (8) conjugates of 6 -azacadeguomycin, respectively. Saponification of 7 gave the corresponding L-glutamic acid derivative 9 . A similar coupling of 2 with L-phenyl-alaninyl- N^{t}-nitro-L-arginine methyl ester trifluoroacetate and subsequent ammonolysis (after catalytic hydrogenation) gave L-phenylalaninyl-L-arginine amide conjugate (12) of 6 -azacadeguomycin. Compounds $2,4,6,8,9$, and 12 were evaluated for their ability to potentiate T-cell responses to plant mitogens, in comparison with cadeguomycin (1). Compounds 4, 6, and 9 exhibited an increase in the T-cell proliferation in a dose-dependent manner.

Interest in the nucleoside peptides was rekindled largely due to the recent isolation of several new naturally occurring peptidyl nucleoside antibiotics, e.g. arginomycin, ${ }^{2}$ chryscandin, ${ }^{3}$ and A201A. ${ }^{4}$ The nucleoside and nucleotide peptides isolated from various sources differ markedly in structure and length of nucleotide and peptide chain, as well as in the nature of the peptide linkage. ${ }^{5-8}$ Such variance of type of linkage and position of peptide attachment may be correlated with different reactivity and biological function. ${ }^{5}$ Certain nucleotide peptides which readily bind to DNA and inhibit nucleic acid synthesis are

[^0]suggestive of a regulatory function. ${ }^{9}$ Gabbay and coworkers ${ }^{10}$ have shown that peptides containing aromatic amino acids readily interact with DNA and the aromatic residue of the peptide is partially inserted between base pairs. This intercalation is rather specific and shows an affinity for A:T binding sites. ${ }^{11}$ Sequence-specific DNA binding proteins regulate gene expression and also serve structural and catalytic functions in other cellular processes. ${ }^{12,13}$ Considerable evidence is now accumulating indicating that various peptides and proteins are linked to certain types of viral DNA ${ }^{14}$ and RNA. ${ }^{15,16}$ It is of particular interest that certain DNA-binding oligopeptides exhibit remarkable antiviral activity, ${ }^{17}$ e.g. netropsin ${ }^{18}$ and
(9) Islam, M. N.; Kay, E. R. M. Arch. Biochem. Biophys. 1972, $150,250$.
(10) Gabbay, E. J.; Sanford, K.; Baxter, C. S. Biochemistry 1972, 11, 3429.
(11) Gabbay, E. J.; Sanford, K.; Kapicak, L. Biochemistry 1973, 12, 4021.
(12) Pabo, C. O.; Sauer, R. T. Annu. Rev. Biochem. 1984, 53, 293.
(13) Dervan, P. B. Science 1986, 232, 464.
(14) Hyman, R. N.; Richards, J. C.; Kudler, L. Biochem. Biophys. Res. Commun. 1979, 88, 522.
(15) Flanigan, J. B.; Peterson, R. F.; Ambros, V.; Hewlett, M. J.; Baltimore, D. Proc. Natl. Acad. Sci. U.S.A 1977, 74, 961.
(16) Lee, Y. F.; Nomoto, A.; Detjen, B. M.; Wimmer, E. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 59.
(17) Goodsell, D.; Dickerson, R. E. J. Med. Chem. 1986, 29, 727.
distamycin. ${ }^{19,20}$ However, both netropsin and distamycin are too toxic for clinical use. ${ }^{19,21}$

Cadeguomycin is a novel nucleoside antibiotic isolated recently ${ }^{22}$ from the culture broth of Streptomyces hygroscopicus IM7912T, as a minor component together with tubercidin, and characterized as 2 -amino-3,4-dihydro-4-oxo-7- β-D-ribofuranosylpyrrolo[2,3- d]pyrimidine-5carboxylic acid (1). ${ }^{23}$ This interesting antibiotic inhibits

the growth of solid IMC carcinoma and pulmonary metastatis of Lewis lung carcinoma in mice in association with modification of the immune system. ${ }^{24}$ It enhances cellmediated immunity and macrophage activity. ${ }^{24}$ Cadeguomycin displays a unique property of enhancing uptake of pyrimidine nucleosides into K562 human myelogenous leukemic cells and YAC-1 murine lymphoma cells, and it potentiates cytotoxicity of ara-C C^{24-26} as well as 5-fluoro-2^{\prime}-deoxycytidine ${ }^{27}$ both in vitro and in vivo.

The immune system is important in the host defense against tumors and microbial infections including viruses. T-cell-mediated specific, as well as nonspecific, host immune responses have been shown to be involved in providing protection against various pathogens and malignant diseases. ${ }^{28-34}$ Breakdown in the immune defense system can result in the induction of malignancy and various microbial and parasitic infections as evident by the acquired immune deficiency syndrome (AIDS). ${ }^{35}$
(18) Julia, M.; Preau-Joseph, N. C. R. Hebd. Seances Acad. Sci. 1963, 257, 1115.
(19) Hahn, F. E. In Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents; Corcoran, J. W., Hahn, F. E., Eds.; Springer-Verlag: New York, 1975; p 79.
(20) Arcamone, F.; Orezzi, P. G.; Barbieri, W.; Nicolella, V.; Penco, S. Gazz. Chim. Ital. 1968, 97, 1097.
(21) Targets for the Design of Antiviral Agents; De Clercq, E.; Walker, R. T., Eds.; Plenum: New York, 1984.
(22) Tanaka, N.; Wu, R. T.; Okabe, T.; Yamashita, H.; Shimazu, A.; Nishimura, T. J. Antibiol. 1982, 35, 272.
(23) Wu, R. T.; Okabe, T.; Namikoshi, M.; Okuda, S.; Nishimura, T.; Tanaka, N. J. Antibiot. 1982, 35, 279.
(24) Yuan, B. D.; Wu, R. T.; Sato, I.; Okabe, T.; Suzuki, H.; Nishimura, T.; Tanaka, N. J. Antibiot. 1985, 38, 642.
(25) Wu, R. T.; Okabe, T.; Kim, S. H.; Suzuki, H.; Tanaka, N. J. Antibiot. 1985, 38, 1588.
(26) Suzuki, H.; Kim, S. H.; Tahara, M.; Okazaki, K.; Okabe, T.; Wu, R. T.; Tanaka, N. Cancer Res. 1987, 47, 713.
(27) Kim, S. H.; Okabe, T.; Tanaka, N.; Suzuki, H. J. Antibiot. 1987, 40, 1776.
(28) Herberman, R. B.; Ortaldo, J. R. Science 1981, 214, 24.
(29) Lotzova, E. Cancer Bull. 1984, 36, 215.
(30) Eberlein, T. J.; Rosenstein, M.; Rosenberg, S. A. J. Exp. Med. 1982, 156, 385.
(31) Cheever, M. A.; Greenberg, P. D.; Fefer, A.; Gillis, S. J. Exp. Med. 1982, 155, 968.
(32) Wells, M. A.; Daniel, S.; Djeu, J. Y.; Kiley, S. C.; Ennis, F. A. J. Immunol. 1983, 130, 2908.
(33) Sethi, K. K.; Omata, Y.; Schneweis, K. E. J. Virol. 1983, 64, 443.
(34) Quinnan, G. V.; Burns, W. H.; Kirmani, N.; Rook, A. H.; Manischewitz, J.; Jackson, L.; Saral, R. Rev. Infect. Dis. 1984, 6, 156.

Scheme I

Qualitative/quantitative abnormalities in the helper T-cells ($\left.\mathrm{CD4}^{+}\right)^{36,37}$ appear to be the predominant cause for the induction of this immunodeficiency disorder as T-cells are important in the regulation of various immune functions. In an effort to evaluate the nucleoside peptides for their ability to potentiate immune functions, especially the T-cell responses to plant mitogens, we have now synthesized certain amino acid and peptide derivatives of the readily available aza congener of 1,6 -azacadeguomycin ${ }^{38}$ [6-amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxopyrazolo-[3,4- d]pyrimidine-3-carboxylic acid, 2] in which the peptide linkage is on the carboxylic acid group of the aglycon moiety. We hoped that the COOH group of 2 could be altered to a-CONH- function by coupling amino acids or peptides with 6 -azacadeguomycin, which could impart greater selectivity of binding. The representative amino acids were selected on the basis of their ability to form hydrogen bonds with either the A:T or the G:C base pair. ${ }^{12}$ An aromatic amino acid was chosen because of its intercalation behavior with DNA. ${ }^{10}$ These nucleoside peptides could permit a quick assessment of the role of the nature and size of the charged end group in potentiating the ability of immune function.

Results and Discussion

The synthesis of these amino acid and peptide conjugates of 6-azacadeguomycin (2) was accomplished in good yields, via a two-step procedure involving the coupling of 2 with an appropriately protected amino acid or peptide ester. Since the purification of these coupling products was found to be rather difficult, due primarily to the coelution of unreacted 2, acetylation of the reaction product was found to be beneficial. 6-Azacadeguomycin (2) was prepared as reported from our laboratory. ${ }^{38}$ Compound 2 was coupled to L-phenylalanine methyl ester hydrochloride in anhydrous DMF with 1-hydroxybenzotriazole monohydrate (HOBT) and the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide hydrochloride (EDC), in the presence of triethylamine (TEA) ${ }^{39}$ (Scheme I). Without extensive pu-

[^1]Table I. Effect of 6-Azacadeguomycin Peptides on Mitogen-Induced Human Lymphocyte Proliferation in Comparison with Cadeguomycin (1) ${ }^{a}$

${ }^{a}$ Peripheral blood lymphocytes ($1 \times 10^{5} / 0.2 \mathrm{~mL}$) from healthy donors were incubated with the plant mitogens in the presence or absence of compounds for $3-4$ days. Lymphocyte proliferation induced by the mitogens was measured by incorporation of $\left[{ }^{3} \mathrm{H}\right]$ thymidine in lymphocytes. The background $\left[{ }^{3} \mathrm{H}\right]$ thymidine incorporation without mitogen were usually in the hundreds (cpm). ${ }^{b} \mathrm{Standard}$ deviation. ${ }^{c}$ Dilution of PWM from GIBCO.
rification, the resulting reaction product was acetylated with acetic anhydride in DMF/pyridine to furnish N [[6-amino-1-(2,3,5-tri- O-acetyl- β-D-ribofuranosyl)-4,5-di-hydro-4-oxopyrazolo[3,4-d]pyrimidin-3-yl]carbonyl]-Lphenylalanine methyl ester (3), which was isolated as a crystalline material in 58% yield. Treatment of 3 with $\mathrm{MeOH} / \mathrm{NH}_{3}$ at room temperature resulted in the ammonolysis of the ester function with concomitant deacetylation to give the desired N-[(6-amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxopyrazolo[3,4-d]pyrimidin-3-yl)-carbonyl]-L-phenylalanine amide (4) in excellent yield.

This general synthetic procedure was found to be applicable equally well to the preparation of other linear nucleoside peptides. Thus, condensation of 2 with glycine ethyl ester hydrochloride or L-glutamic acid diethyl ester hydrochloride in the presence of HOBT, EDC, and TEA gave the corresponding protected nucleoside peptide ester (5 and 7, respectively) in good yields. Ammonolysis of 5 and 7 with $\mathrm{MeOH} / \mathrm{NH}_{3}$ gave the desired glycine amide (6) and L-glutamic acid diamide (8) derivatives of 6 -azacadeguomycin. Hydrolysis of the ester function of 7 with 1 N NaOH in MeOH /acetone at room temperature gave N -[(6-amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxopyrazolo-[3,4-d]pyrimidin-3-yl)carbonyl]-L-glutamic acid (9), which was isolated in 90% yield.

Following the similar coupling procedure an appropriately protected dipeptide was also reacted with 2 . When 2 was subjected to the above coupling conditions with the trifluoroacetate salt of L-phenylalaninyl- N^{ϵ}-nitro-L-arginine methyl ester in the presence of N-methylmorpholine, followed by acetylation, [N-[[6-amino-1-(2,3,5-tri- O -acetyl- β-D-ribofuranosyl)-4,5-dihydro-4-oxopyrazolo[3,4d]pyrimidin-3-yl]carbonyl]-L-phenylalaninyl]- N^{ϵ}-nitro-Larginine methyl ester (10) was formed (Scheme I). The
yield of crystalline 10 by this procedure was 70%. Direct coupling of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyl-6-azacadeguomycin with L-phenylalaninyl- N^{ϵ}-nitro-L-arginine methyl ester trifluoroacetate under identical conditions also gave 10 in 70% yield. Subsequent catalytic (Pd / C) hydrogenation of 10 , followed by ammonolysis of the reaction product (11) with $\mathrm{MeOH} / \mathrm{NH}_{3}$, gave $[N$-[(6-amino-1- β-D-ribo-furanosyl-4,5-dihydro-4-oxopyrazolo[3,4-d]pyrimidin-3-yl)carbonyl]-L-phenylalaninyl]-L-arginine amide (12), in an overall yield of 72%. All the 6 -azacadeguomycin peptides synthesized during this study were fully characterized by spectroscopic and elemental analyses. Confirmation that little or no racemization of the amino acid moieties had occurred was ascertained by TLC and HPLC studies. ${ }^{40}$

Effect of the Nucleosides on Mitogen-Induced Human Lymphocyte Proliferation. Human peripheral blood lymphocytes isolated over a Ficoll-Hypaque gradient were cultured with phytohemagglutinin (PHA), concanavalin A (Con A), or pokeweed mitogen (PWM) in the presence or absence of the test compounds. The results are shown in Table I. Cadeguomycin (1) significantly increased the lymphocyte proliferation induced by $1 \mu \mathrm{~g}$ of PHA at $400 \mu \mathrm{M}$ concentration ($P<0.05$). There was, however, no sigificant potentiation of Con A induced and PWM-induced lymphocyte proliferation by cadeguomycin. Compound 9 had no significant effect when the PHA-induced T-cell proliferation (without 9) was high (56641 CPM). However, it showed a significant increase (up to a maximum increase of $140 \%, P<0.05$) in the T-cell proliferation in a dose-dependent manner when the response without 9 was relatively low (6506 CPM). In contrast to cadeguomycin, compound 9 also enhanced responses to T-cell mitogen Con A and T- and B-cell mitogen

[^2]PWM when compared with the response to mitogens alone ($P<0.05$). Similarly, compounds 4 and 6 were able to potentiate PHA-induced T-cell proliferation by 43% and 88%, respectively (maximal increases), which were greater than the proliferation induced by PHA alone ($P<0.05$, $P=0.01$). Again, the optimal enhancement was noted when the control (without compounds 4 or 6) response was moderate. Compound 4 also significantly augmented the proliferative response to PWM ($P<0.05$), whereas compound 6 had a marginal effect. 6-Azacadeguomycin (2) and the nucleoside peptides 8 and 12 exhibited no significant increases in lymphocyte proliferation.

In summary, several selected amino acid and peptide derivatives of 6 -azacadeguomycin have been prepared in good yield. The peptide linkage is on the carboxylic group of the pyrazolo $[3,4-d$]pyrimidine moiety, which mimics the substituted carbamoyl group at position 5 of cadeguomycin. Compounds 4, 6, and 9 showed an increase in the T-cell proliferation in a dose-dependent manner, whereas 6-azacadeguomycin (2) did not show such an increase.

Experimental Section

General Procedures. Melting points (uncorrected) were determined in a Thomas-Hoover capillary melting point apparatus. Elemental analyses were performed by Robertson Laboratory, Madison, NJ. Thin-layer chromatography (TLC) was performed on plates of silica gel 60F-254 (EM Reagents). Silica gel (E. Merck; 230-400 mesh) was used for flash column chromatography. All solvents used were reagent grade. Detection of nucleoside components in TLC was by UV light and with 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH spray followed by heating. Evaporations were conducted under diminished pressure with the bath temperature below $30^{\circ} \mathrm{C}$. Infrared (IR) spectra were recorded in KBr with a Perkin-Elmer 1420 -spectrophotometer and ultraviolet (UV) spectra were recorded with a Beckman DU-50 spectrophotometer (sh = shoulder). Nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded at 300 MHz with an IBM NR/ 300 spectrometer. The chemical shift values were expressed in δ values (parts per million) relative to $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. The signals are described as s (singlet), d (doublet), t (triplet), and m (multiplet). The presence of solvent as indicated by elemental analysis was verified by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The L -amino acids and coupling reagents used in this study were commercially available. The dipeptide was prepared by a standard solution phase method. THF was distilled prior to use from sodium benzophenone ketyl. Dichloromethane was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over Linde 3A molecular sieves. Dimethylformamide was distilled from CaH_{2}.
N-[[6-Amino-1-(2,3,5-tri- O-acetyl- β-d-ribofuranosyl)-4,5-dihydro-4-oxopyrazolo [3,4- d]pyrimidin-3-yl]carbonyl]-Lphenylalanine Methyl Ester (3). A mixture of 6 -amino-1- β -D-ribofuranosyl-4,5-dihydro-4-oxopyrazolo [3,4-d]pyrimidine-3carboxylic acid ${ }^{38}$ (6-azacadeguomycin, $2,0.98 \mathrm{~g}, 3 \mathrm{mmol}$), $\mathrm{L}-$ phenylalanine methyl ester hydrochloride ($0.65 \mathrm{~g}, 3 \mathrm{mmol}$), and 1-hydroxybenzotriazole monohydrate (HOBT, $0.42 \mathrm{~g}, 3.1 \mathrm{mmol}$) in dry DMF (50 mL) was cooled to $0^{\circ} \mathrm{C}$. To this cold, stirred solution was added triethylamine (TEA, $0.42 \mathrm{~g}, 4.1 \mathrm{mmol}$) and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC, $0.62 \mathrm{~g}, 3.2 \mathrm{mmol}$). The reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 2 h and then at room temperature for 12 h . The solvent was evaporated, and the oily residue was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum for 1 day. This dry material was used as such for the acetylation reaction without characterization.

A solution of the above residue in dry DMF/pyridine (1:1, 40 mL) was treated with acetic anhydride ($1.23 \mathrm{~g}, 12 \mathrm{mmol}$) and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was evaporated to dryness and the residue was purified by flash chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone ($7: 3, \mathrm{v} / \mathrm{v}$) as the eulent. The homogeneous fractions were pooled, evaporated to dryness and the residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing acetone to give $1.07 \mathrm{~g}(58 \%)$ of $3: \mathrm{mp} 243-245^{\circ} \mathrm{C}$; IR $\nu_{\text {max }} 1630$, 1670 (amide), 1740 (ester), $3200-3400\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; UV (pH 1) $\lambda_{\text {max }}$ $232(\epsilon 18800), 260(\mathrm{sh}) \mathrm{nm}(11700) ; \mathrm{UV}(\mathrm{pH} 7) \lambda_{\max } 230(\epsilon 22100)$,

260 (sh) (13500), 285 (sh) nm (5800); UV (pH 11) $\lambda_{\max } 230(\epsilon$ 26200), 265 (sh) (11700), 288 (sh) nm (6700); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.03-2.09\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{COCH}_{3}\right), 2.97-3.22\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Phe- CH_{2}), 3.63 (s, $3 \mathrm{H}, \mathrm{COOCH}_{3}$), $4.04(\mathrm{~m}, 1 \mathrm{H}$, Phe- $\alpha-H), 6.16\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=\right.$ $\left.6.0 \mathrm{~Hz}, \mathrm{C}_{1} \cdot \mathrm{H}\right), 7.0-7.30\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}-\mathrm{H}+\mathrm{NH}_{2}\right), 10.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{N} H)$, and 11.50 (br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{11}\right.$, MW 614.51) C, H, N.
\boldsymbol{N}-[(6-Amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxo-pyrazolo[3,4- \boldsymbol{d}]pyrimidin-3-yl)carbonyl]-L-phenylalanine Amide (4). A solution of 3 ($0.65 \mathrm{~g}, 1.06 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{NH}_{3}$ (70 mL , saturated at $0^{\circ} \mathrm{C}$) was stirred at room temperature in a pressure bottle for 12 h . The bottle was cooled to $0^{\circ} \mathrm{C}$ and opened and the NH_{3} was allowed to evaporate. The MeOH was evaporated to dryness and the residue on crystallization from aqueous EtOH gave $0.35 \mathrm{~g}(70 \%)$ of $4: \mathrm{mp} 274-276{ }^{\circ} \mathrm{C}$; IR $\nu_{\text {max }}$ $1650(\mathrm{C}=\mathrm{O}), 3200-3400\left(\mathrm{NH}_{2}, \mathrm{OH}\right) \mathrm{cm}^{-1}$; UV $(\mathrm{pH} 1) \lambda_{\max } 234(\epsilon$ 29700), 260 (sh) (18900), $286 \mathrm{~nm}(7200)$; UV (pH 7) $\lambda_{\max } 234$ (ϵ 32400), 260 (sh) (19900), 285 nm (8100); UV (pH 11) $\lambda_{\text {max }} 230$ ($\epsilon 38000$), 265 (sh) (16500), 287 nm (9200); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 2.75-3.18$ (m, 2 H, Phe- CH_{2}), 4.12 (m, 1 H, Phe- $\alpha-H$), 5.89 (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{C}_{1} H\right), 6.90-7.62\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}-H+\mathrm{NH}_{2}+\right.$ CONH_{2}), $10.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{N} H)$, and 11.27 (s, $1 \mathrm{H}, \mathrm{N} H$). Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}\right.$, MW 491.40) C, H, N.
\boldsymbol{N}-[(6-Amino-1-(2,3,5-tri- O-acetyl- β-D-ribofuranosyl)-4,5-dihydro-4-oxopyrazolo[3,4-d]pyrimidin-3-yl)carbonyl]glycine Ethyl Ester (5). By following the procedure as described for the preparation of 3 , the title compound was prepared by using $2(0.98 \mathrm{~g}, 3 \mathrm{mmol})$, glycine ethyl ester hydrochloride ($0.46 \mathrm{~g}, 3.4$ mmol), $\mathrm{HOBT}(0.42 \mathrm{~g}, 3.1 \mathrm{mmol})$, $\operatorname{EDC}(0.62 \mathrm{~g}, 3.2 \mathrm{mmol})$, and TEA ($0.34 \mathrm{~g}, 3.4 \mathrm{mmol}$) in dry DMF (50 mL). Acetylation of the crude reaction product with $\mathrm{Ac}_{2} \mathrm{O}(1.23 \mathrm{~g}, 12 \mathrm{mmol})$ in DMF/ pyridine ($1: 1,100 \mathrm{~mL}$) and purification by flash chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone ($7: 3 \mathrm{l} \mathrm{v} / \mathrm{v}$), followed by crystallization from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone gave 0.85 $\mathrm{g}(53 \%)$ of $5: \mathrm{mp} 202-205^{\circ} \mathrm{C}$; IR $\nu_{\max } 1630,1680(\mathrm{C}=0$ of amide), $1750\left(\mathrm{C}=\mathrm{O}\right.$ of ester), $3200-3400\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; UV (pH 1) $\lambda_{\text {max }} 232$ ($\epsilon 16600$), 259 (sh) (9700), 286 (sh) nm (4200); UV (pH 7) $\lambda_{\max }$ 228 ($\epsilon 19400$), 260 (sh) (10800), 284 (sh) nm (5400); UV (pH 11) $\lambda_{\max } 230(\epsilon 22100), 288 \mathrm{~nm}(5900) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.20$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.05-2.10\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{COCH}_{3}\right.$), 4.11 (m, 2 H , Gly- CH_{2}) $, 6.18\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2}=6.0 \mathrm{~Hz}, \mathrm{C}_{1} H\right), 7.20\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}\right.$), 10.48 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{N} H$), and 11.45 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{11}\right.$, MW 538.42) C, H, N.
\boldsymbol{N}-[(6-Amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxo-pyrazolo[3,4-d]pyrimidin-3-yl)carbonyl]glycine Amide (6). The title compound was prepared in a similar manner as described for 4 with $5(0.60 \mathrm{~g}, 1.12 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{NH}_{3}(70 \mathrm{~mL})$. The product was crystallized from 95% aqueous EtOH to yield 0.27 $\mathrm{g}(63 \%)$ of 6: $\mathrm{mp}>250^{\circ} \mathrm{C} \mathrm{dec}$; IR $\nu_{\max } 1650,1670$ ($\mathrm{C}=0$ of amide), $3200-3400\left(\mathrm{NH}_{2}, \mathrm{OH}\right) \mathrm{cm}^{-1} ; \mathrm{UV}(\mathrm{pH} 1) \lambda_{\max } 235(\epsilon 5500), 260(\mathrm{sh})$ $\mathrm{nm}(3400)$; UV (pH 7) $\lambda_{\text {max }} 234$ (60000), $260 \mathrm{~nm}(3400)$; UV (pH 11) $\lambda_{\max } 230(\epsilon 13200), 265(\mathrm{sh}) \mathrm{nm}(5400) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Gly}-\mathrm{CH}_{2}\right), 5.92\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{C}_{1} H\right), 6.96$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.08 and $7.48\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{CONH}_{2}\right), 10.25(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{N} H$), and 11.25 (br s, $1 \mathrm{H}, \mathrm{N} H)$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{7}{ }^{1} /{ }_{2} \mathrm{H}_{2} \mathrm{O}\right.$, MW 401.29) C, H, N.
N-[[6-Amino-1-(2,3,5-tri- O-acetyl- β-D-ribofuranosyl)-4,5-dihydro-4-oxopyrazolo[$3,4-d$]pyrimidin-3-yl]carbonyl]-Lglutamic Acid Diethyl Ester (7). In a similar manner as for 3, the title compound was prepared by using $2(1.65 \mathrm{~g}, 5 \mathrm{mmol})$, L-glutamic acid diethyl ester hydrochloride ($1.30 \mathrm{~g}, 5.5 \mathrm{mmol}$), HOBT ($0.65 \mathrm{~g}, 5 \mathrm{mmol}$), EDC ($0.96 \mathrm{~g}, 5 \mathrm{mmol}$), and TEA (0.60 $\mathrm{g}, 6 \mathrm{mmol}$) in dry DMF (50 mL). Acetylation of the crude reaction product with $\mathrm{Ac}_{2} \mathrm{O}(2.04 \mathrm{~g}, 20 \mathrm{mmol})$ in dry DMF (30 mL) and pyridine (20 mL) and purification by flash chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone ($7: 3, \mathrm{v} / \mathrm{v}$), followed by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing MeOH gave $2.6 \mathrm{~g}(81 \%)$ of $7: \mathrm{mp}$ $220-224^{\circ} \mathrm{C}$; $\mathrm{IR} \nu_{\max } 1680$ ($\mathrm{C}=\mathrm{O}$ of amide), 1740 ($\mathrm{C}=\mathrm{O}$ of ester), $3200-3400\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; UV (EtOH) $228(\epsilon 21700), 257(13800)$, 286 (sh) nm (5400); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.14-1.23$ (m, $6 \mathrm{H}, 2$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.90-2.43 (m, $13 \mathrm{H}, 3 \mathrm{COCH}_{3}+\mathrm{Glu}-\mathrm{CH}_{2}$), $4.01-4.17$ ($\mathrm{m}, 5 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Glu}-\alpha-H$), $6.19\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=6.0 \mathrm{~Hz}, \mathrm{C}_{1} H\right.$), 7.12 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $10.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$ and $11.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{13}\right.$, MW 638.53) C, H, N.
N-[(6-Amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxo-pyrazolo[3,4-d $]$ pyrimidin-3-yl) carbonyl]-L-glutamic Acid

Diamide (8). This compound was prepared by following the procedure as described for the synthesis of 4 , with compound 7 $(1.40 \mathrm{~g}, 2.2 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{NH}_{3}(100 \mathrm{~mL})$. The residue after crystallization from 95% aqueous EtOH gave 0.70 g (70%) of the title compound: $\operatorname{mp} 263-265^{\circ} \mathrm{C}$; IR $\nu_{\max } 1670$ ($\mathrm{C}=0$ of amide), $3200-3400\left(\mathrm{NH}_{2}, \mathrm{OH}\right) \mathrm{cm}^{-1}$; UV (pH 1) $\lambda_{\max } 234$ ($\left.\epsilon 23400\right), 260$ (sh) (15000), 290 (sh) nm (6800); UV (pH 7) $\lambda_{\max } 232(\epsilon 24900)$, 260 (sh) (16800), 287 (sh) nm (8200); UV (pH 11) $\lambda_{\text {max }} 230$ (ϵ 29000), 262 (sh) (14100), 287 (sh) nm (8600); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.80-2.18$ (m, 4 H , Glu- CH_{2}), 4.16 (m, 1 H , Glu- $\alpha-H$), 5.92 (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{C}_{1}, H\right), 6.76$ and $7.29\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{CONH}_{2}\right), 7.06$ and $\left.7.50(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{CONH})_{2}\right), 7.00\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 10.26(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{N} H$), and 11.25 (br s, $1 \mathrm{H}, \mathrm{N} H)$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{8}\right.$. $1 / 2 \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$, MW 488.42) C, H, N.
\boldsymbol{N}-[(6-Amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxo-pyrazolo[3,4-d]pyrimidin-3-yl)carbonyl]-L-glutamic Acid (9). A solution of $7(1.40 \mathrm{~g}, 2.2 \mathrm{mmol})$ in $\mathrm{MeOH} /$ acetone (10 mL each) and 1 N NaOH ($15.4 \mathrm{~mL}, 15.4 \mathrm{mmol}$) was stirred at ambient temperature for 6 h . The MeOH /acetone was evaporated and the aqueous solution was diluted with water (50 mL). The pH of the aqueous solution was adjusted to 4 with Dowex- $50\left(\mathrm{H}^{+}\right)$ resin. The resin was removed by filtration and washed with water $(2 \times 10 \mathrm{~mL})$, and the combined filtrates were evaporated to dryness. The residue was crystallized from 95% aqueous EtOH to give $0.9 \mathrm{~g}(90 \%)$ of $9: \mathrm{mp}>230^{\circ} \mathrm{C}$ dec; $\mathrm{IR} \nu_{\max } 1670(\mathrm{C}=0$ of amide $), 1730(\mathrm{C}=\mathrm{O}$ of COOH$), 3200-3400\left(\mathrm{NH}_{2}, \mathrm{OH}\right) \mathrm{cm}^{-1}$; UV (pH 1) $\lambda_{\max } 234(\epsilon 29800), 260(\mathrm{sh})(17300), 284 \mathrm{~nm}(7400) ;$ UV (pH 7) $\lambda_{\max } 229(\epsilon 29600), 257$ (sh) (20500), 284 (sh) nm (7300); UV (pH 11) $\lambda_{\max } 230(\epsilon 30000), 258(\mathrm{sh})(20000), 285(\mathrm{sh}) \mathrm{nm}$ (7000); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.87-2.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Glu}-\mathrm{CH}_{2}\right), 4.16$ $(\mathrm{m}, 1 \mathrm{H}$, Glu- $\alpha-H), 5.93\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{C}_{1^{\prime}} H\right), 7.05$ (br s, $2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}$), 10.44 (d, $1 \mathrm{H}, \mathrm{NH}$), 11.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), and 12.50 (br s, $2 \mathrm{H}, 2 \mathrm{COOH}$). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{10} \cdot \frac{1}{2} / \mathrm{H}_{2} \mathrm{O}\right.$, MW 465.33) C, H, N.
[N-[[6-Amino-1-(2,3,5-tri- O-acetyl- β-D-ribofuranosyl)-4,5-dihydro-4-oxopyrazolo[3,4-d]pyrimidin-3-yl]-carbonyl]-L-phenylalaninyl]- $\boldsymbol{N}^{\epsilon}$-nitro-L-arginine Methyl Ester (10). Method A. In the same manner as for 3, reaction of $2(0.82 \mathrm{~g}, 2.5 \mathrm{mmol})$, L-phenylalaninyl $-N^{\mathrm{t}}$-nitro-L-arginine methyl ester trifluoroacetate ($1.24 \mathrm{~g}, 2.5 \mathrm{mmol}$), N-methylmorpholine (0.25 $\mathrm{g}, 2.5 \mathrm{mmol})$, HOBT ($0.33 \mathrm{~g}, 2.5 \mathrm{mmol}$), and EDC $(0.48 \mathrm{~g}, 2.5$ mmol) in dry DMF (50 mL) and subsequent acetylation of the reaction product with $\mathrm{Ac}_{2} \mathrm{O}(1.78 \mathrm{~g}, 17.5 \mathrm{mmol})$ in anhydrous pyridine (30 mL) and DMF (30 mL) gave the crude product. Purification of the crude product by flash chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone ($7: 3, \mathrm{v} / \mathrm{v}$) as the eluent, followed by crystallization from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone $/ \mathrm{MeOH}$, gave $1.0 \mathrm{~g}(70 \%)$ of $10: \mathrm{mp} 135-137^{\circ} \mathrm{C}$; $\mathrm{IR} \nu_{\text {max }} 1650(\mathrm{C}=0$ of amide), $1750\left(\mathrm{C}=\mathrm{O}\right.$ of ester), $3200-3400\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; UV (pH 1 1) $\lambda_{\max } 225$ (sh) ($\epsilon 24100$), $259 \mathrm{~nm}(24500)$; (pH 7 7) $\lambda_{\max } 229$ (sh) ($\epsilon 27500$), $260 \mathrm{~nm}(27100)$; UV (pH 11) $\lambda_{\text {max }} 230(\epsilon 31500), 263 \mathrm{~nm}(25000)$; ${ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.48-1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Arg}-\mathrm{CH}_{2}\right), 2.03-2.09$ ($3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{COCH}_{3}$), 2.82-3.30 (m, 4 H , Phe and Arg- CH_{2}), 3.62 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.02 (m, 1 H , Phe- $\alpha-H$), 4.25 (m, $1 \mathrm{H}, \mathrm{Arg}-\alpha-H$), $6.15\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{C}_{1} H\right), 6.90-7.35(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Phe}-\mathrm{H}+$ $\left.\mathrm{NH}_{2}\right), 7.70-8.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{N} H+\mathrm{NH}_{2}\right), 8.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{N} H), 10.40$ (d, $1 \mathrm{H}, \mathrm{NH}$), and 11.37 (s, $1 \mathrm{H}, \mathrm{NH}$). Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{11} \mathrm{O}_{14}\right.$, MW 815.66) C, H, N.

Method B. A solution of 6-azacadeguomycin ${ }^{38}(2,2.5 \mathrm{~g}, 7.65$ mmol) in dry DMF (50 mL), anhydrous pyridine (20 mL), and $\mathrm{Ac}_{2} \mathrm{O}(3.90,38.2 \mathrm{mmol})$ was stirred at room temperature for 12 h and then evaporated to dryness. The residue was suspended in a mixture of water (50 mL) and EtOAc (75 mL) and stirred for 1 h . The aqueous phase was separated and again extracted with EtOAc ($2 \times 25 \mathrm{~mL}$). The organic layers were combined and washed with saturated brine solution ($2 \times 25 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. Crystallization of the residue from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH gave 2.8 g (81%) of 6 -amino-1-($2,3,5$-tri- O-acetyl- β-D-ribofuranosyl) $-4,5$ -dihydro-4-oxopyrazolo $[3,4-d]$ pyrimidine-3-carboxylic acid ($2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyl-6-azacadeguomycin): $\operatorname{mp} 159-161^{\circ} \mathrm{C}$; IR $\nu_{\text {max }}$ $1640(\mathrm{C}=\mathrm{O}), 1750(\mathrm{C}=\mathrm{O}$ of COOH$), 3300-3400\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; UV (pH 1) $\lambda_{\max } 230(\epsilon 18900), 259(8700), 288 \mathrm{~nm}(4100)$; UV (pH 7) $\lambda_{\max } 255 \mathrm{~nm}(\epsilon 11800)$; UV (pH 11) $\lambda_{\max } 222$ (sh) $(\epsilon 24500), 262$ $\mathrm{nm}(8800) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.97-2.09\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{COCH}_{3}\right)$,
6.17 (d, $1 \mathrm{H}, J_{1^{\prime}, 2}=6.0 \mathrm{~Hz}, \mathrm{C}_{1} H$), $7.30\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$), and 11.90 (br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{10}\right.$, MW 453.36) C, H, N. $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri- O-acetyl-6-azacadeguomycin ($0.91 \mathrm{~g}, 2 \mathrm{mmol}$) was coupled with L-phenylalaninyl- N^{t}-nitro-L-arginine methyl ester trifluoroacetate ($0.86 \mathrm{~g}, 1.76 \mathrm{mmol}$) in the presence of N methylmorpholine ($0.20 \mathrm{~g}, 2 \mathrm{mmol}$), HOBT ($0.26 \mathrm{~g}, 2 \mathrm{mmol}$), and EDC ($0.48 \mathrm{~g}, 2.5 \mathrm{mmol}$) in a mixture of dry DMF (30 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ as described in method A . The crude product was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone (7:3, v / v) as the eluent to give $1.0 \mathrm{~g}(70 \%)$ of $10: \mathrm{mp} 135-137^{\circ} \mathrm{C}$ and was identical with 10 prepared by method A.
[N-[[6-Amino-1- β-D-ribofuranosyl-4,5-dihydro-4-oxo-pyrazolo[3,4-d]pyrimidin-3-yl]carbonyl]-L-phenyl-alaninyl]-L-arginine Amide (12). To a solution of $10(1.5 \mathrm{~g}$, 1.84 mmol) in EtOH (100 mL) and water (25 mL) was added Pd/C ($10 \%, 0.5 \mathrm{~g}$) and the mixture was hydrogenated on a Parr hydrogenator at 40 psi for 10 h . The catalyst was removed by filtration on a Celite pad and washed with hot aqueous EtOH $(2 \times 25 \mathrm{~mL})$, and the combined filtrates were evaporated to dryness. The residue (11), after drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum for 5 h , was used as such for the next step without characterization.

The above residue ($11,1.1 \mathrm{~g}, 1.43 \mathrm{mmol}$) was stirred with $\mathrm{MeOH} / \mathrm{NH}_{3}$ (saturated at $0^{\circ} \mathrm{C}, 120 \mathrm{~mL}$) at ambient temperature for 24 h in a pressure bottle. The bottle was cooled and opened, and the solvents were evaporated to dryness. The residue was crystallized from aqueous EtOH to yield $0.65 \mathrm{~g}(72 \%)$ of $12: \mathrm{mp}$ $253-255^{\circ} \mathrm{C}$; IR $\nu_{\max } 1650$ ($\mathrm{C}=\mathrm{O}$ of amide), $3200-3400\left(\mathrm{NH}_{2}, \mathrm{OH}\right)$ cm^{-1}; UV (pH 1) $\lambda_{\max } 233(\epsilon 17600), 260(\mathrm{sh})(10700), 290(\mathrm{sh})$ nm (3200); (pH 7) $\lambda_{\max } 233(\epsilon 20200), 260(\mathrm{sh})(11300), 290$ (sh) $\mathrm{nm}(4400)$; (pH II) $\lambda_{\max } 229(\epsilon 22500), 260(\mathrm{sh})(9400), 287$ (sh) $\mathrm{nm}(5100)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.10-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Arg}-\mathrm{CH}_{2}\right)$, 2.99-3.15 (m, 4 H, Arg- and Phe-CH2), 4.12-4.30 (m, 2 H, Argand Phe- $\alpha-H_{\mathrm{s}}$), $5.92\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{C}_{1^{\prime}} H\right.$), 6.07 (br s, 2 $\left.\mathrm{H}, \mathrm{NH}_{2}\right), 7.03-7.30\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ph}-\mathrm{H}+2 \mathrm{NH}+\mathrm{NH}_{2}+\mathrm{CONH}_{2}\right)$, 7.56 (d, $1 \mathrm{H}, \mathrm{N} H$), 8.88 (br, s, $1 \mathrm{H}, \mathrm{N} H$), and $11.50(\mathrm{~d}, \mathrm{l}, \mathrm{N} H)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{11} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW} 629.54\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Effect of 6-Azacadeguomycin Peptides on Mitogen-Induced Human Lymphocyte Proliferation. 6-Azacadeguomycin peptides were tested for their ability to modulate lymphocyte proliferation to T and B plant mitogens in vitro. The inhibition of, or the increase in, $\left[{ }^{3} \mathrm{H}\right]$ thymidine incorporation in mitogenstimulated lymphocytes was used as the measure of immunomodulatory activity of these compounds. Lymphocytes were isolated from heparinized peripheral blood of normal healthy human donors over Ficoll-Hypaque as previously described. ${ }^{41,42}$ In brief, the blood was diluted with (1:1) Hanks balanced salt solution (HBSS), layered over a Ficoll-Hypaque gradient, and centrifuged at 500 g for 20 min . The lymphocytes recovered from the interface were washed and resuspended in complete RPMI1640 medium containing 10% heat-inactivated human AB serum (CM). Lymphocytes (1×10^{5}) suspended in 100 mL of CM were cultured with plant mitogens with or without various concentrations of cadeguomycin or its aza analogues in microculture plates. The total volume was $200 \mu \mathrm{~L}$. The incubation was carried out at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$, humid atmosphere for $72-96 \mathrm{~h}$. All cultures were incubated in quadruplicate. Sixteen hours before the end of incubation period, each sample was pulsed with $1 \mu \mathrm{Ci}$ of $\left[{ }^{3} \mathrm{H}\right]$ thymidine, and the cells were harvested by filtration on glass-fiber filter paper using a cell harvester and washed with distilled water. $\left[{ }^{3} \mathrm{H}\right]$ Thymidine incorporation was determined by counting in a liquid-scintillation counter. The data was analyzed using Student's t test.

Registry No. 2, 96555-48-5; 2 (tri- O-acetyl derivative), 121176-42-9; 3, 121176-29-2; deacetyl-3, 121176-38-3; 4, 121176-30-5; 5, 121176-31-6; deacetyl-5, 121176-39-4; 6, 121176-32-7; 7, 121176-33-8; deacetyl-7, 121176-40-7; 8, 121176-34-9; 9, 121176-35-0; 10, 121191-54-6; deacetyl-10, 121176-41-8; 11, 121176-36-1; 12, 121176-37-2; H-Phe-OMe-HCl, 7524-50-7; H-Gly-OEt.HCl, 623-33-6; H-Glu(OEt)-OEt-HCl, 1118-89-4; H-Phe-Arg $\left(\mathrm{NO}_{2}\right)$ -OMe-TFA, 30668-59-8.

[^3]
[^0]: (1) For part 9, see: Ramasamy, K.; Robins, R. K.; Revankar, G. R. Tetrahedron 1988, 44, 1023.
 (2) Argoudelis, A. D.; Baczynskyj, L.; Kuo, M. T.; Laborde, A. L.; Sebek, O. K.; Truesdell, S. E.; Shilliday, F. B. J. Antibiot. 1987, 40, 750.
 (3) Yamashita, M.; Tsurumi, Y.; Hosoda, J.; Komori, T.; Kohsaka, M.; Imanaka, H. J. Antibiot. 1984, 37, 1279.
 (4) Kirst, H. A.; Dorman, D. E.; Occolowitz, J. L.; Jones, N. D.; Paschal, J. W.; Hamill, R. L.; Szymanski, E. F. J. Antibiot. 1985, 38, 575.
 (5) Shabarova, Z. A. Prog. Nucleic Acid Res. Mol. Biol. 1970, 10, 145.
 (6) Uramoto, M.; Kobinata, K.; Isono, K.; Higashijima, T.; Miyazawa, T. Tetrahedron 1982, 38, 1599.
 (7) Yamaguchi, H.; Sato, S.; Yoshida, S.; Takada, K.; Itoh, M.; Seto, H.; Otake, N. J. Antibiot. 1986, 39, 1047.
 (8) Castro-Pichel, J.; Garcia-Lopez, M. T.; De las Heras, F. G. Tetrahedron 1987, 43, 383.

[^1]: (35) Schroff, R. W.; Gottibier, M. S.; Prince, H. E.; Chai, L. L.; Fahey, J. L. Clin. Immunol. Immunopathol. 1983, 27, 299.
 (36) Simpson, E. Nature 1988, 336, 426.
 (37) Shinohara, N.; Watanabe, M.; Sachs, D. H.; Hozumi, N. Nature 1988, 336, 481.
 (38) Petrie, C. R.; Cottam, H. B.; McKernan, P. A.; Robins, R. K.; Revankar, G. R. J. Med. Chem. 1985, 28, 1010.

[^2]: (40) Charles, R.; Beitler, U.; Feibush, B.; Gil-Av, E. J. Chromatogr. 1975, 112, 121.

[^3]: (41) Sharma, B.; Kohashi, O.; Mickey, M. R.; Terasaki, P. T. Cancer Res. 1975, 35, 666.
 (42) Sharma, B. Transplantation 1983, 35, 165.

